

BULOVA WATCH COMPANY, Inc. TECHNICAL BULLETIN

BULOVA® ACCUTRON® QUARTZ S M Q® Series 247

DIAL SIDE

PRINTED CIRCUIT SIDE

Fig. 1. Enlarged view of movement

INTRODUCTION

The Series 247 is an electronic movement with analog display. A Quartz Crystal controlled Stepping Motor drives the gear train and the dial train, causing the hands to turn.

TOOLS

- Quartz Crystal Deviation Counter with 32,768 Hz. capacity
- Bulova Service Meter #700
- Accessory #9920/6603
- Non-magnetic tweezers
- Watchmaker's Screwdrivers
- Watchmaker's Loupe
- Watchmaker's Hand Tools

IMPORTANT:

See page 2 fig. 2 for recommended Power Cell replacement procedure.

SPECIFICATIONS

QUARTZ FREQUENCY

32,768 Hz. (cycles per second)

ELECTRONIC CIRCUIT

Integrated circuit with 12 second impulses.

NO POWER DISCONNECT SYSTEM

There is no saving of Battery life when watch is stored with crown in setting position.

STEPPING MOTOR

Bipolar, 4 steps per revolution. Steps every 12 seconds.

JEWELS

3

DIMENSIONS

15.30 mm x 18.10 mm x 4.5 mm

LIGNE SIZE

63/4 x 8

DISPLAY


Model 2470-Minute and Hour Hand

POWER SOURCE


One Silver Oxide Battery 1.55 volts, "Bulova 247."

POWER CELL REPLACEMENT

Due to the contact spring exerting pressure on the side of the Power Cell, it is necessary, when removing the cell, to proceed as described below.

Step 1. Loosen Cell Strap Screw one full turn and rotate Strap away from Movement.

CAUTION:

Attempting to remove the Cell by inserting a screwdriver between the Battery and the Coil Support may cause damage to the Coil Support.

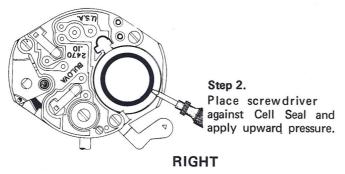


Fig. 2

CHECKING THE FREQUENCY (RATE)

Quartz Frequency should be regulated to 32,768 Hz., ± 0.17 seconds per day.

ADJUSTING THE FREQUENCY (RATE)

To Regulate: turn the trimmer (located on Electronic Circuit above the stem hole). The maximum rate change is approximately 7 seconds per day.

AUDIBLE SOUND

There is no constant audible sound present as with other types of watch movements. The only sound heard is a 'click" once every 12 seconds when the motor impulses.

SERVICE

It is NOT necessary to periodically clean the Series 247 movement, nor completely disassemble the movement when it requires cleaning. DO NOT CLEAN MOVEMENT IN "MIRACLE LUBE," "ONE STEP," etc. Use regular clean and rinse solutions only. When cleaning the movement the following parts must be removed:

- Electronic Circuit (#10.513),
- Rotor Bridge (#10.542),
- Rotor (#20.580),
- Coil Support (#20,594).

The rotor bridge may be cleaned with the movement. The rotor pivots and pinion can be cleaned with "one dip" or soft (pith) wood.

NOTE:

If the movement is completely disassembled for cleaning, the Main Plate (#10.020) must be placed in a separate compartment in the cleaning basket. This is to prevent possible damage to the train wheel posts.

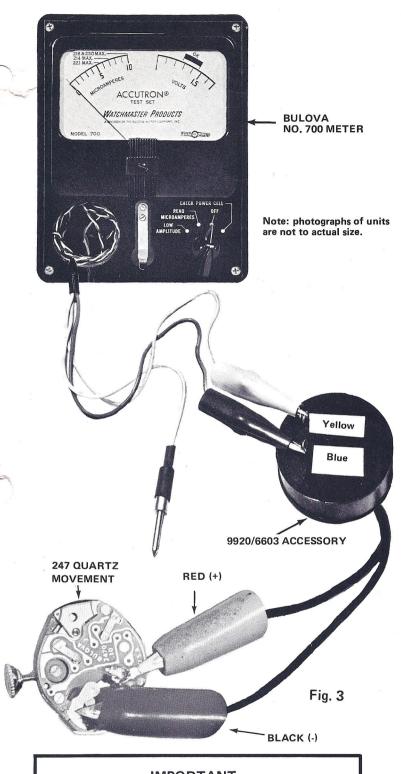
LUBRICATION

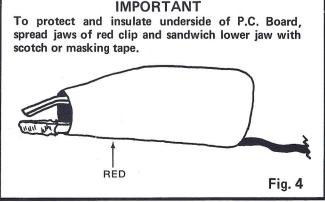
ONLY the following parts are lubricated:

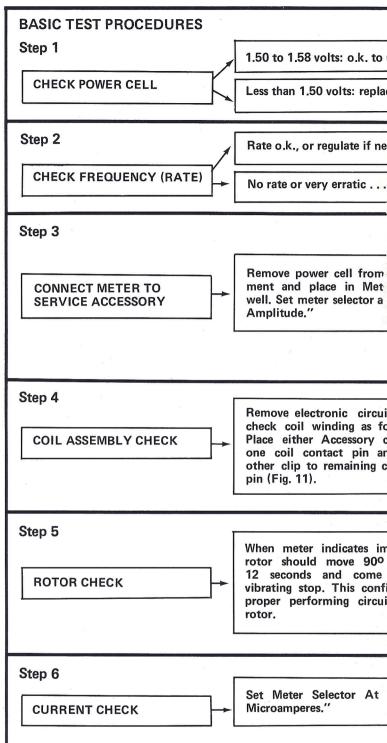
- Upper and lower Rotor Jewels (Moebius OL 219)
- Off-Center (4th) Wheel (Clutch) (Moebius OL 219).
- Contact between Set Lever and Rocking Bar (Dow Corning #111 or "Silicon 7"). See Fig's. 10 and 11.

DIALING

The SMQ 247 movement is designed without the use of dial screws. If the dial becomes loose, use a flatnose pliers to carefully pinch, and thereby slightly elongate the dial foot for additional tension. DO NOT OVER PINCH! If this does not correct, replace dial foot bushing (#10.300).


SETTING

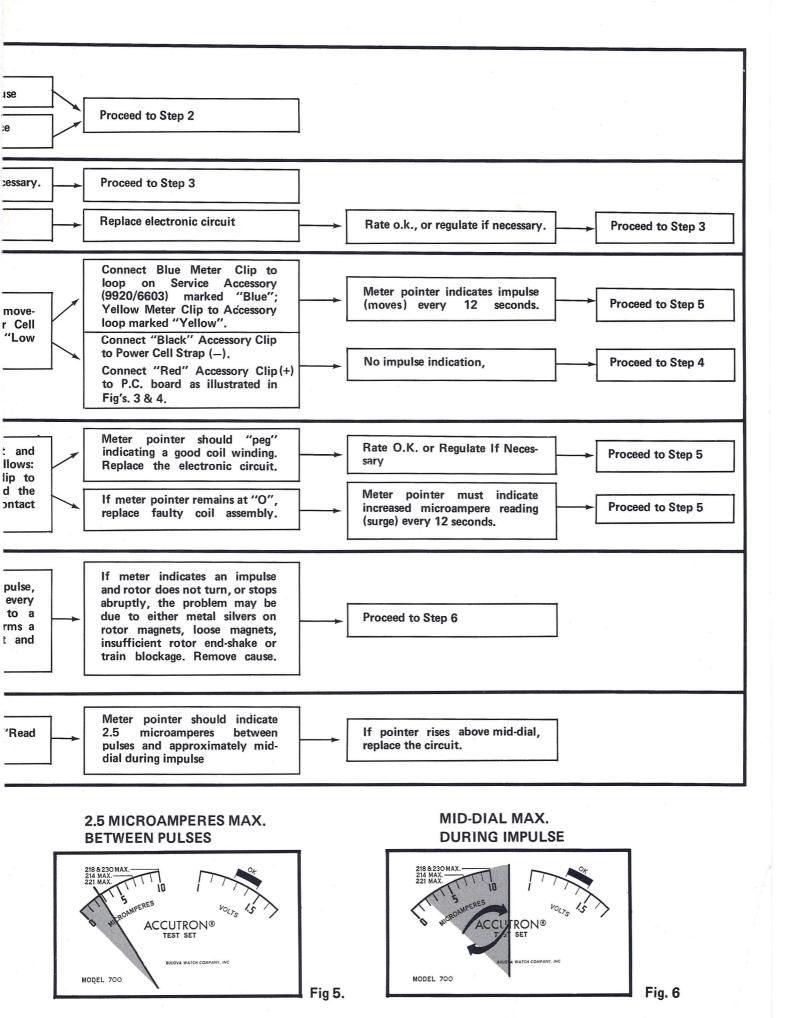

Pull the crown into the "setting position" and turn the hands to approximately 5 min. past the correct time, then back-up to one minute ahead of the correct time. Push crown "in.


COIL WINDING CHECK

- Step 1. Remove electronic circuit (#10.513).
- Step 2. Set meter at "Low Amplitude."
- Step 3. Touch either Meter Clip to the contact post shown in Fig. 11.
- Step 4. Touch the other Clip to remaining post.

Step 5. Pointer on meter will indicate maximum reading (peg) if coil is O.K. Needle will remain at "O" if open. If the coil is open, replace.

CONNECTING METER TO MOVEMENT

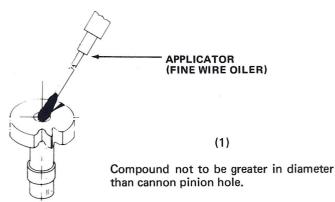

Step 1. Remove Power Cell from Movement and place in the Meter Cell Well.

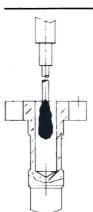
Step 2. Set Meter Selector at "LOW AMPLITUDE"

Step 3. Connect Blue Meter Clip to loop in service Accessory (9920/6603) marked "Blue"; Yellow Meter Clip to Accessory loop marked "Yellow".

Step 4. Connect "Black" Accessory Clip to Power Cell Strap (-).

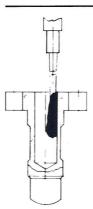
Step 5. Connect "Red" Accessory Clip to Printed Circuit Board as illustrated in Fig's. 3 & 4.




NOTE: CANNON PINION COMPOUNDING

The Cannon Pinion is "Free Floating" and has been specifically designed in this manner. Do not attempt to tighten it. To reduce play in the minute hand, proceed as follows:

Place a small amount of Dow Corning Compound #111 or Silicon 7 on the inside of the Cannon Pinion. (See illustrations). This will restrain the motion of the Cannon Pinion/minute hand.


The use of any other compound may create excessive drag. Be sure to re-apply this compound after each cleaning of the movement.

(2)

Insert oiler ½ way into cannon pinion hole without touching top edge of hole.

(3)

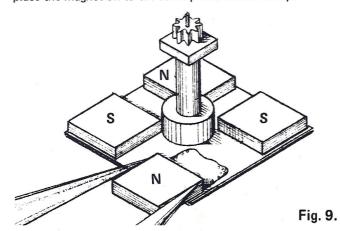
Press oiler against side of hole and withdraw with twisting action

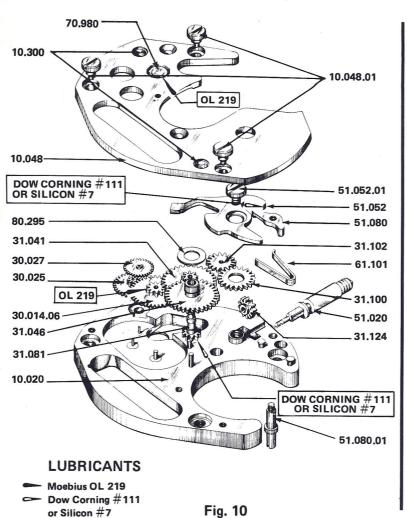
(4)

CAUTION: Remove any excess compound from pinion surface after with-drawing oiler.

Fig. 7

To Remove Rocking Bar Spring:




LOOSE ROTOR MAGNET

If a magnet becomes loose or separated from the rotor, proceed as follows:

Fig. 8

- 1. Place rotor on piece of "one touch" (rodico) and holding the loose magnet with a non-magnetic tweezer, approach the magnet next to the empty space on the rotor plate. See Fig. 9.
- 2. The magnet held in the tweezer must be repelled when held above either of the fixed magnets that are next to the empty space. If the magnet is attracted, invert (turn over) the tweezer held magnet.
- 3. Apply cement to the empty space on the rotor plate and place the magnet on to the rotor plate. Allow to dry.

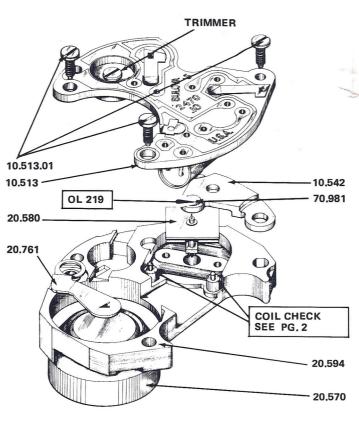


Fig. 11

Part No.	Part Name	Part No.	Part Name
10.020	Main Plate	31.081	Cannon Pinion
10.048	Train Wheel Bridge	31.100	Setting Wheel
10.048.01	Train Wheel Bridge Screw	31.102	Motion Work Setting Wheel
10.300	Dial Foot Bushing	31.124	Setting Pinion
10.513	Electronic Circuit	51.020	Setting Stem
10.513.01	Electronic Circuit Screw	51.052	Rocking Bar
10.542	Rotor Bridge	51.052.01	Rocking Bar Screw
20.570	Power Cell (Bulova # 247)	51.080	Setting Lever
20.580	Rotor	51.080.01	Setting Lever Screw
20.594	Coil Support	61.101	Rocking Bar Spring
20.761	Power Cell Strap	70.980	Rotor Jewel Ass'y. (Train Bridge
30.014.06	Off-Center Wheel (fourth)	70.981	Rotor Bridge Jewel
30.025	Third Wheel	80.295	Dial Spacer
30.027	Second Wheel	* 80.820	Rotor Bridge Foot (threaded)
31.041	Minute Wheel	* 80.820.90	Circuit Board Foot (threaded)
31.046	Hour Wheel		

[&]quot;Accutron", "Bulova", and " 🕌 " are registered trademarks of the Bulova Watch Company, Inc.

40M 3/79 Printed U.S.A.