
FURTHER NONEXISTENCE OF FIBONACCI TRIANGLES

CHRIS HURLBURT AND DAVID KETTLESTRINGS

Abstract. A Fibonacci triangle is a triangle with integer area and sides
whose lengths are Fibonacci numbers. An example of a Fibonacci triangle
is the triangle whose sides have lengths (5, 5, 8). This example, first given
by H. Harborth and A. Kemnitz in a paper where they proved that any
Fibonacci triangle must be isosceles and any other Fibonacci triangle must
have side lengths (Fn−k, Fn, Fn) for 2 ≤ k < n [1], is the only known
example of a Fibonacci triangle. Later H. Harborth, A Kemnitz, and N.
Robbins proved that there are no Fibonacci triangles with side lengths
(Fn−k, Fn, Fn) and1 ≤ k ≤ 5 [2], and have conjectured that there are
no other Fibonacci triangles besides the triangle with sides (5, 5, 8). In
what follows we demonstrate the non-existence of Fibonacci triangles for a
number of values of k.

1. Introduction

Fibonacci trianges, first introduced by H. Harborth and A. Kemnitz in [1],
are triangles whose side lengths are Fibonacci numbers and whose area is
integral. In general, a triangle with integer side lengths and integer area is
referred to as a Heron triangle. In particular a Heron triangle whose side
lengths are Fibonacci numbers is called a Fibonacci triangle. At this time
there is only one known example of a Fibonacci triangle, namely (5, 5, 8).
It was proved in [1] that (5, 5, 8) is the only Fibonacci triangle of the type
(Fk, Fk, Fn) for 1 ≤ k ≤ n. In the same paper they also proved that there
are no Fibonacci triangles of the type (Fn−1, Fn, Fn) and conjecture, “Perhaps
(5, 5, 8) is the unique Fibonacci triangle?” In a later paper H. Harborth, A
Kemnitz, and N. Robbins prove that there are no Fibonacci triangles with
side lengths (Fn−k, Fn, Fn) and1 ≤ k ≤ 5 [2].

We provide further evidence supporting the nonexistence conjecture by prov-
ing the following theorem.

Theorem 1.1. There are no Fibonacci triangles with side lengths (Fn−k, Fn, Fn)
and 6 ≤ k ≤ 10.

The techniques below used to prove nonexistence are different than those
used in the previous references. They rely among other things on the period-
icity of the Fibonacci numbers modulo m and computations using to Jacobi
symbol. We remind the reader in the first section about various properties
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of the Fibonacci numbers that we will use and provide a brief outline of the
Jacobi symbol. Then we discuss requirements necessary for a triangle to be
a Fibonacci triangle which leads use to develop some general purpose tools
to use in proving nonexistence of Fibonacci triangles. In the final section we
prove the nonexistence on Fibonacci triangles for 6 ≤ k ≤ 10 on a case by case
basis for each value of k, proving the theorem in the introduction.

2. Properties of Fibonacci Numbers

The Fibonacci numbers are the numbers in a sequence of numbers Fi where
F0 = 0, F1 = 1, F2 = 1, and Fi = Fi−1 + Fi−2 for i ≥ 3. The numbers in this
sequence have many interesting properties including the following identities:

Fn+m = FmFn+1 + Fm−1Fn(2.1)

F2n−1 = F 2
n + F 2

n−1(2.2)

F2n = F 2
n + 2Fn−1Fn(2.3)

for m and n positive integers. When considered modulo Fn,

Fmn+r ≡


Fr, if m mod 4 = 0;

(−1)r+1Fn−r, if m mod 4 = 1;

(−1)nFr, if m mod 4 = 2;

(−1)r+1+nFn−r, if m mod 4 = 3.

Moreover given two Fibonacci numbers Fn and Fm, the gcd(Fn, Fm) = Fgcd(n,m)

where gcd refers to the greatest common divisor of Fn and Fm. This in com-
bination with the fact that Fmk is a multiple of Fm, means that if m > 2, then
Fm|Fn if and only if m|n. To see the if direction of this iff note if Fm|Fn, then
Fm = gcd(Fm, Fn) = Fgcd(m,n). When m > 2, the Fibonacci numbers are an
injective mapping to the integers and so m = gcd(m, n) implying that m|n.

Next we introduce the Jacobi symbol as a tool for proving that a number
is not a perfect square. Recall that to define the Jacobi symbol, we must first
define the Legendre symbol.

Definition 2.1. Let p be a prime number. Then the symbol

(
a

p

)
will have

value 1 if a is a quadratic residue mod p, −1 if a is a quadratic nonresidue

mod p, and zero if p|a.

(
a

p

)
is called the Legendre symbol.

Then the Jacobi symbol, also denoted
(a

b

)
, is an extension of the Legendre

symbol where if b is a prime number
(a

b

)
is the Legendre symbol as just

defined. Otherwise,
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Definition 2.2. Let b be an odd, positive integer and a any integer. Let
b = p1p2 . . . pm, where the pi are (not necessarily distinct) primes. The symbol(a

b

)
defined by (a

b

)
=

(
a

p1

)(
a

p2

)
. . .

(
a

pm

)
is called the Jacobi symbol.

So if
(a

b

)
= −1 then a is a quadratic nonresidue modulo b and hence

a cannot be a perfect square. The following proposition provides tools for
occasionally computing the Jacobi symbol.

Proposition 2.3. Let b, b1, and b2 be odd positive integers. Then

(i)
(a1

b

)
=
(a2

b

)
if a1 ≡ a2 modulo b;

(ii)
(a1a2

b

)
=
(a1

b

)(a2

b

)
;

(iii)

(
a

b1b2

)
=

(
a

b1

)(
a

b2

)
.

Furthermore if both a and b are odd positive integers with either a ≡ 1

modulo 4 or b ≡ 1 modulo 4 and gcd(a, b) = 1, then
(a

b

)
=

(
b

a

)
. Using the

Jacobi symbol, following proposition about Fibonacci numbers that implies
not only is F2l−1 not a perfect square, but also any number congruent to F2l−1

modulo F2l is not a perfect square.

Proposition 2.4. If l ≥ 2, then the Jacobi symbol(
F2l−1

F2l

)
= −1.

Proof. Using the Fibonacci identities 2.2 and 2.3 we can compute as follows(
F2l−1

F2l

)
=

(
F2l−1

F2l−1(F2l−1 + 2F2l−1−1)

)
=

(
F2l−1

F2l−1

)(
F2l−1

(F2l−1 + 2F2l−1−1)

)
=

(
F 2

2l−1 + F 2
2l−1−1

F2l−1

)(
F 2

2l−1 + F 2
2l−1−1

(F2l−1 + 2F2l−1−1)

)

=

(
F 2

2l−1 + F 2
2l−1−1

F2l−1 + 2F2l−1−1

)
.
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Then using congruences inside the Jacobi symbol(
F2l−1

F2l

)
=

(
F 2

2l−1 + F 2
2l−1−1

− F2l−1(F2l−1 + 2F2l−1−1)

F2l−1 + 2F2l−1−1

)

=

(
F 2

2l−1−1
− F2l−12F2l−1−1

F2l−1 + 2F2l−1−1

)

=

(
F2l−1−1(F2l−1−1 − 2F2l−1)

F2l−1 + 2F2l−1−1

)
=

(
F2l−1−1

F2l−1 + 2F2l−1−1

)(
F2l−1−1 − 2F2l−1

F2l−1 + 2F2l−1−1

)
=

(
F2l−1−1

F2l−1 + 2F2l−1−1

)(
F2l−1−1 − 2F2l−1 + 2(F2l−1 + 2F2l−1−1)

F2l−1 + 2F2l−1−1

)
=

(
F2l−1−1

F2l−1 + 2F2l−1−1

)(
5F2l−1−1

F2l−1 + 2F2l−1−1

)
=

(
5

F2l−1 + 2F2l−1−1

)
.

Finally because 5 ≡ 1 mod 4 this becomes(
F2l−1

F2l

)
=

(
F2l−1 + 2F2l−1−1

5

)
.

We can now compute the last Jacobi symbol by computing F2l−1 + 2F2l−1−1

modulo 5. We note that Fn modulo 5 repeats every 20 and so the value of
F2l−1 modulo 5 is just the value of F2l−1 mod 20. If l = 2, then F2l−1 +2F2l−1−1 =
F2 + 2F1 = 3 which is a nonresidue modulo 5. If l > 2, then 2l−1 modulo 20 is
one of 4, 8, 16, or 12. In each of these cases

• 2l−1 ≡ 4 mod 20: In this case F2l−1 ≡ 3 mod 5 and F2l−1−1 ≡ 2
mod 5. Therefore F2l−1 + 2F2l−1−1 ≡ 3 + 2(2) = 7 mod 5 which is a
nonresidue modulo 5.

• 2l−1 ≡ 8 mod 20: In this case F2l−1 ≡ 1 mod 5 and F2l−1−1 ≡ 3
mod 5. Therefore F2l−1 + 2F2l−1−1 ≡ 1 + 2(3) = 7 mod 5 which is a
nonresidue modulo 5.

• 2l−1 ≡ 12 mod 20: In this case F2l−1 ≡ 4 mod 5 and F2l−1−1 ≡ 4
mod 5. Therefore F2l−1 + 2F2l−1−1 ≡ 4 + 2(4) = 12 mod 5 which is a
nonresidue modulo 5.
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• 2l−1 ≡ 16 mod 20: In this case F2l−1 ≡ 1 mod 2 and F2l−1−1 ≡ 0
mod 5. Therefore F2l−1 + 2F2l−1−1 ≡ 2 + 2(0) = 2 mod 5 which is a
nonresidue modulo 5.

Since all possible cases result in a quadratic nonresidue, it follows that(
F2l−1

F2l

)
=

(
F2l−1 + 2F2l−1−1

5

)
= −1.

�

3. Requirements to be a Fibonacci Triangle

Recall that a Fibonacci triangle is a triangle whose side lengths are Fibonacci
numbers and whose area is integral. In [1], H. Harborth and A. Kemnitz
showed that any Fibonacci triangle must be isosceles. They also proved that
aside from the triangle with sides (5, 5, 8), any other Fibonacci triangle must
have side lengths (Fn−k, Fn, Fn) where n > k and k represents the difference in
index between the short side length and the longer side lengths. Therefore, for
a fixed value of k, proving the non-existence of Fibonacci triangles with side
lengths (Fn−k, Fn, Fn) for all n > k is equivalent to proving the non-existence of
Fibonacci triangles with side lengths (Fn+k, Fn+k, Fn) for all positive integers
n. We will use the latter indexing system for possible Fibonacci triangles and
from now on all triangles will be referred to by listing the lengths of their sides,
albeit without any particular regard to order.

Consider the triangle

�
�
�
�
�
�
�
�
�

A
A

A
A

A
A

A
A
A

Fn

Fn+kFn+k

h

This triangle is a Fibonacci triangle when and only when the area of this

triangle,
1

2
hFn, is integral. Therefore we will assume that

1

2
hFn is integral

and prove the following consequences.

Proposition 3.1. If (Fn+k, Fn+k, Fn) is a Fibonacci triangle, then Fn is even.

Proof. Let A be the area of (Fn+k, Fn+k, Fn) and suppose A is an integer. Then
16A2 = 4F 2

nF 2
n+k − F 4

n meaning F 4
n is an even integer. However, F 4

n is even
only if Fn is even. �
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Proposition 3.2. Fn is even iff 3|n.

Proof. This is an immediate corollary of the fact that Fm|Fn if and only if m|n
given that F3 = 2. �

An immediate consequence of these two propositions is the following corollary
that restricts the possible values of n for a Fibonacci triangle.

Corollary 3.3. If (Fn+k, Fn+k, Fn) is a Fibonacci triangle, then it must be
(F3i+k, F3i+k, F3i) for some positive integer i.

Just as we have defined h to be the height of the triangle (Fn+k, Fn+k, Fn),
from now on we will let d = gcd(Fn+k, Fn) for a given triangle (Fn+k, Fn+k, Fn).

Proposition 3.4. If (Fn+k, Fn+k, Fn) is a Fibonacci triangle, then

d = gcd(Fn+k, Fn) = Fgcd(n,k) = gcd

(
Fn+k,

Fn

2

)
.

Proof. That gcd(Fn+k, Fn) = Fgcd(n+k,k) = Fgcd(n,k) follows immediately from
the greatest common divisor property of Fibonacci numbers. Let A be the
area of the triangle (Fn+k, Fn+k, Fn). Then 16A2 = F 2

n(4F 2
n+k − F 2

n) and so

16A2 = d2F 2
n

(
4
F 2

n+k

d2
− F 2

n

d2

)
.

Hence 4
F 2

n+k

d2
− F 2

n

d2
is an integral perfect square which is congruent to −F 2

n

d2

modulo 4. In order for −F 2
n

d2
to be the residue perfect square modulo 4,

Fn

d

must be even and so d

∣∣∣∣Fn

2
. The immediate consequence is d

∣∣gcd
(
Fn+k,

Fn

2

)
.

Conversely, if g = gcd
(
Fn+k,

Fn

2

)
then g|Fn+k, g|Fn, and so g|d. �

A result of this proposition is that for (Fn+k, Fn+k, Fn) a Fibonacci triangle
Fn+k

d
, Fn

2d
, and h

d
are all integers that happen to form the sides of a right triangle.

Proposition 3.5. If (Fn+k, Fn+k, Fn) is a Fibonacci triangle, then(
Fn+k

d
,
Fn

2d
,
h

d

)
where d = Fgcd(n,k) is a primitive Pythagorean triple.

This means that properties of primitive Pythagorean triples must apply to
any Fibonacci triangle as follows.

Corollary 3.6. If (Fn+k, Fn+k, Fn) is a Fibonacci triangle, then

Fn+k

d
≡ 1 mod 4.
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Corollary 3.7. Let d = Fgcd(n,k). If (Fn+k, Fn+k, Fn) is a Fibonacci triangle,
then

Fn+k

d
+

Fn

2d
and

Fn+k

d
− Fn

2d
must be perfect squares.

Proof. The product
(

Fn+k

d
+ Fn

2d

)(
Fn+k

d
− Fn

2d

)
= h2

d2 is a perfect square. Addi-

tionally Fn+k

d
+ Fn

2d
and Fn+k

d
− Fn

2d
have no common factors meaning that for

their product to be a perfect square, each must be a perfect square. �

Combining these two corollaries we can get further restrictions on the pos-
sible values of n for (Fn+k, Fn+k, Fn) to be a Fibonacci triangle.

Proposition 3.8. If (Fn+k, Fn+k, Fn) is a Fibonacci triangle, then it must be
(F6i+k, F6i+k, F6i) for some positive integer i.

Proof. Suppose (Fn+k, Fn+k, Fn) is a Fibonacci triangle. Then Fn+k

d
≡ 1 mod 4.

Consider Fn+k

d
+ Fn

2d
≡ 1+ Fn

2d
and Fn+k

d
− Fn

2d
≡ 1− Fn

2d
modulo 4. If Fn

2d
≡ 1 mod

4, then Fn+k

d
+ Fn

2d
≡ 2 mod 4 is a nonresidue and hence not a perfect square.

Similarly if Fn

2d
≡ 2 mod 4, then Fn+k

d
+ Fn

2d
≡ 3 mod 4 can’t be a perfect square.

If Fn

2d
≡ 2 mod 4, then Fn+k

d
− Fn

2d
≡ 2 mod 4 can’t be a perfect square. Therefore

because both Fn+k

d
+ Fn

2d
and Fn+k

d
− Fn

2d
must be perfect squares, Fn

2d
≡ 0 mod

4 implying that 8|Fn. However 8 = F6 divides Fn only if 6|n. �

The converse to corollary 3.7 is that if either Fn+k

d
+ Fn

2d
or Fn+k

d
− Fn

2d
is

not a perfect square, then (Fn+k, Fn+k, Fn) cannot be a Fibonacci triangle.

Our strategy is to show through various techniques that either Fn+k

d
+ Fn

2d
or

Fn+k

d
− Fn

2d
is not a perfect square. A number is not a perfect square if it is

a quadratic nonresidue modulo b for some integer b. An example of how this
works is the following proposition.

Proposition 3.9. Let d = Fgcd(n,k). If there exists an odd number b such that
the Jacobi symbol (

Fn+k

d
+ Fn

2d

b

)
= −1

or the Jacobi symbol (
Fn+k

d
− Fn

2d

b

)
= −1,

then (Fn+k, Fn+k, Fn) is not a Fibonacci triangle.

Summarizing to this point, the statement “There do not exist any Fibonacci
triangles of the form (Fn+k, Fn+k, Fn) for a fixed value of k,” is a consequence
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of the statement “Given a fixed value k, either F6i+k

d
+ F6i

2d
or F6i+k

d
− F6i

2d
is not

a perfect square for any positive integer i where d = Fgcd(6i,k).” As such, we
will focus on the latter statement.

4. Tools for Proving the Nonexistence of Fibonacci Triangles

The sequence of Fibonacci numbers modulo n is a repeating sequence where
the repeat length depends on the value of n. So for example, modulo 11, the
sequence of Fibonacci numbers is

1,1,2,3,5,8,2,10,1,0,1, 1, 2, 3, 5, 8, 2, . . .

As is easily seen the sequence modulo 11 repeats every tenth number whereas
Fk ≡ Fk+10t modulo 11. For this reason to compute the values of F6i+k + F6i

2

and F6i+k − F6i

2
modulo 11, it is enough to compute the values for 1 ≤ i ≤ 5

and 0 ≤ k ≤ 10 and then mod the indices by 10 in order to compute the values
of F6i+k + F6i

2
and F6i+k − F6i

2
modulo 11. In general if l is the repeat length

of the Fibonacci numbers modulo n for n > 2, then the values of F6i+k + F6i

2

and F6i+k − F6i

2
modulo n are completely determined by computing the l2/2

values where 1 ≤ i ≤ l/2 and 0 ≤ k ≤ l − 1.
An example of this is that the values of F6i+k + F6i

2
and F6i+k − F6i

2
modulo

11 are completely determined by the matrices

a =



1 7 4 10 0
6 8 6 1 1
3 9 5 4 1
5 0 6 9 2
4 3 6 6 3
5 8 7 8 5
5 5 8 7 8
6 7 10 8 2
7 6 2 8 10
9 7 7 9 1


b =



4 6 5 7 0
9 7 7 9 1
6 8 6 1 1
8 10 7 6 2
7 2 7 3 3
8 7 8 5 5
8 4 9 4 8
9 6 0 5 2
10 5 3 5 10
1 6 8 6 1


where ak+1,i = F6i+k + F6i

2
and bk+1,i = F6i+k − F6i

2
. The nonresidues modulo

11 are {2, 6, 7, 8, 10}. Through observation of these matrices if k ≡ 3, 7, 8
modulo 10, then one of F6i+k + F6i

2
and F6i+k − F6i

2
is not a perfect square for

all i. An example of how this applies is that as a result, in the case k = 7,
any possible Fibonacci triangle must have n = 42i. This then reduces the
problem of proving nonexistence in the case of k = 7 to proving that either
1
F7

(
F42i+7 + F42i

2

)
or 1

F7

(
F42i+7 − F42i

2

)
cannot be a perfect square for any value

of i.



FURTHER NONEXISTENCE OF FIBONACCI TRIANGLES 9

From this example of using the Fibonacci numbers modulo n we see that it
is possible to have reduced the possible cases to the situation where demon-
strating the nonexistence of the following term is sufficient for demonstrating
nonexistence of Fibonacci triangles for the k value.

Definition 4.1. Let t be the least common multiple of k and 6. Define

Sk(i) =
1

Fk

(
Fti

2
+ Fti+k

)
.

When it is obvious what the value of k is, we will drop the k subscript.
Given this definition, the following lemma when combined with proposition
3.9 is sufficient to dealing with Sk(i) cases for i divisible by a large enough
power of 2.

Lemma 4.2. Write t = 2vτ where τ is odd. Let l > v be an integer and
g = gcd(Fk, F2l). Then for any odd integer j

Sk(2
l−vj) ≡ F2l−1 mod

F2l

g
.

Proof. Through application of the identity 2.1, note that

FkSk(i) =
1

2

(
(1 + 2Fk−1)Fti + 2FkFti+1

)
and so

FkSk(2
l−vj) =

1

2

(
(1 + 2Fk−1)Ft2l−vj + 2FkFt2l−vj+1

)
or

FkSk(2
l−vj) =

1

2

(
(1 + 2Fk−1)F2lτj + 2FkF2lτj+1

)
.

Then modulo F2l ,

1

2

(
(1 + 2Fk−1)F2lτj + 2FkF2lτj+1

)
≡ FkF2l−1.

Therefore there exists an integer N such that

FkSk(2
l−vj) = FkF2l−1 + NF2l .

Since Fk must divide NF2l , it follows that there exists an integer N ′ such that
NF2l

Fk

= N ′F2l

g
. Therefore

Sk(2
l−vj) = F2l−1 + N ′F2l

g

and so

Sk(2
l−vj) ≡ F2l−1 mod

F2l

g
.

�
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5. The Nonexistence of Fibonacci Triangles for Specific k

In the subsections that follow we will prove the nonexistence of Fibonacci
triangles for 6 ≤ k ≤ 10. The theorem in the introduction is a direct result.

5.1. The Case When k = 6. We now use these tools to prove the nonexis-
tence of Fibonacci triangles starting with the case k = 6. In this case there
is one possible value of d when k = 6, namely d = F6. We only need to show
that (F6i+6, F6i+6, F6i) is not a Fibonacci triangle for all positive values of i.
As a first step, we have the following proposition:

Proposition 5.1. If i is odd, then (F6i+6, F6i+6, F6i) is not a Fibonacci trian-
gle.

Proof. Suppose i is odd. By proposition 3.4, if (F6i+6, F6i+6, F6i) is a Fibonacci
triangle, then 2F6 must divide F6i. The Fibonacci numbers modulo 16 are

1,1,2,3,5,8,13,5,2,7,9,0,9,9,2,11,13,8,5,13,2,15,1,0,1, 1, 2, 3, 5, . . .

From observing this sequence, 2F6 = 16 divides F6i only if i is even. Therefore
(F6i+6, F6i+6, F6i) can’t be a Fibonacci triangle if i is odd. �

Next we consider S6(i) for i even. For k = 6, we have t = 6, and so v = 1
and τ = 3. So for any even integer i, there exists l > 1 and j odd such that
i = 2l−1j. For all possible values of l > 1, g = gcd(F6, F2l) = F2 = 1. So for
all even i,

S6(i) ≡ F2l−1 mod F2l

where l > 1 is chosen such that i = 2l−1j for j odd. However recalling that
F2l is odd, this means that for i even and l chosen as discussed,(

S6(i)

F2l

)
=

(
F2l−1

F2l

)
= −1.

Therefore if i is even, by proposition 3.9, (F6i+6, F6i+6, F6i) is not a Fibonacci
triangle. We have now proved the following theorem.

Theorem 5.2. There are no Fibonacci triangles of the type (Fn+6, Fn+6, Fn).

5.2. The Case When k = 7. We start by considering the possible values
of d for k = 7. This is equivalent to listing the possible values for gcd(6i, 7)
which are {1, 7} meaning the possible values for d are {F1, F7}.

Suppose d = F1 = 1. Recall that in section 4, we demonstrated in the
example of F6i+k + F6i

2
and F6i+k− F6i

2
modulo 11 that if k = 7, then F6i+k + F6i

2

is not a perfect square for all i. Therefore F6i+k + F6i

2
is certainly not a perfect

square when gcd(6i, 7) = 1. From this we can state that any possible Fibonacci
triangle of the form (Fn+7, Fn+7, Fn) must have n = 42i for some value of i.
Note that for k = 7, the t value in S7(i) is 42, and therefore we focus our

attention on whether or not F42i+7

F7
+ F42i

2F7
= S7(i) can be a perfect square.
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Proposition 5.3. Suppose i 6≡ 0 modulo 4. Then S7(i) is not a perfect square.

Proof. As in the case of computing modulo 11, the sequence of Fibonacci
numbers modulo 9 repeats. Therefore it is enough to compute S7(i) mod 9
which repeats every fourth term and is

6,8,3,1,6, 8, 3, 1, 6, 8, 3, 1, 6 . . .

In this sequence 6, 8, and 3 are nonresidues modulo 9 and 1 is a residue modulo
9. Since S7(i) is a nonresidue modulo 9 if 4 6 |i, S7(i) can’t be a perfect square
if i 6≡ 0 modulo 4. �

Theorem 5.4. There are no Fibonacci triangles of the type (Fn+7, Fn+7, Fn).

Proof. We know that if 28 6 |i, then F6i+7

d
+ F6i

2d
is not a perfect square and

therefore (F6i+7, F6i+7, F6i) is not a Fibonacci triangle. Consider S7(i) for
i = 2l−1j where l > 2 and j is odd. In this situation, by lemma 4.2,

S7(i) ≡ F2l−1 mod F2l

because g = gcd(F7, F2l) = 1. Therefore(
S7(i)

F2l

)
=

(
F2l−1

F2l

)
= −1.

Applying proposition 3.9 to this last situation removes any possibility that
there exists a Fibonacci triangle in the case k = 7. �

5.3. The Case When k = 8. We now consider whether or not there exists
any value of i such that (F6i+8, F6i+8, F6i) is a Fibonacci triangle. The possible
values for d are {F2, F4, F8} corresponding to i odd, i congruent to 2 modulo
4, and i congruent to 0 modulo 4. If i is odd, then d = 1 and so the fact
that one of F6i+8 + F6i

2
and F6i+8 − F6i

2
modulo 11 is a nonresidue means that

(F6i+8, F6i+8, F6i) is not a Fibonacci triangle for i odd.
Suppose i is congruent to 2 modulo 4. Then d = F2 = 3. Note that modulo

11, the inverse of d = 3 is 4. So modulo 11 the values of 1
F4

(
F6i+8 + F6i

2

)
are

completely determined by the repeating sequence

6,2,8,10,7,6, 2, 8, 10, 7, . . .

all of which are nonresidues modulo 11. Therefore 1
F4

(
F6i+8 + F6i

2

)
is not a

perfect square for any value of i and hence (F6i+8, F6i+8, F6i) is not a Fibonacci
triangle for i congruent to 2 modulo 4.

Finally suppose that i is congruent to 0 modulo 4. Then d = F8 = 21 and
it is enough to show that S8(m) is not a perfect square for all m to show that
(F6i+8, F6i+8, F6i) is not a Fibonacci triangle for i congruent to 0 modulo 4.
First we have the following proposition.

Proposition 5.5. If m is odd, then S8(m) is not a perfect square.
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Proof. Computing S8(m) modulo 23 results in the sequence

22,1,22, 1, 22, 1, 22, 1, 22, 1, 22, . . .

The proposition follows from the fact that −1 ≡ 22 is a quadratic nonresidue
modulo 23. �

Note that in this case t = 24 and the v, τ from lemma 4.2 are v = 3, and
τ = 3. If m is even, there exists l > 3 such that m = 2l−3j for j odd such that
application of lemma 4.2 implies

S8(m) ≡ F2l−1 mod
F2l

g

where g = F8. Let P be such that F2l = 3(7)P = F8P = gP . Since 8|2l,

F2l−1 ≡ F7 mod 3. This however means

(
F2l−1

3

)
= 1 because F7 ≡ 1

mod 3. Similarly, the Fibonacci numbers modulo 7 repeat after 16 and there-

fore F2l−1 ≡ F15 mod 7. So

(
F2l−1

7

)
= 1 because F15 ≡ 1 mod 7. Applying

these computations

−1 =

(
F2l−1

F2l

)
=

(
F2l−1

3

)(
F2l−1

7

)(
F2l−1

P

)
=

(
F2l−1

P

)
because of the property of the Jacobi symbol that says if b1 and b2 are odd,

then

(
a

b1b2

)
=

(
a

b1

)(
a

b2

)
. Therefore(

S8(m)

P

)
=

(
F2l−1

P

)
= −1

and so S8(m) is not a perfect square for m even. It follows that (F6i+8, F6i+8, F6i)
is not a Fibonacci triangle for i congruent to 0 modulo 4 and we have now
proved the following theorem.

Theorem 5.6. There are no Fibonacci triangles of the type (Fn+8, Fn+8, Fn).

5.4. The Case When k = 9. When k = 9, the possible values for d are
{F3, F9} corresponding to i 6≡ 0 modulo 3 and i ≡ 0 modulo 3. To see
that 1

F3

(
F6i+9 + F6i

2

)
cannot be a perfect square if i 6≡ 0 modulo 3, consider

1
F3

(
F6i+9 + F6i

2

)
modulo 19. Computing 1

F3

(
F6i+9 + F6i

2

)
modulo 19 results in

the repeating sequence

3,18,17,3, 18, 17, 3, 18, 17, . . .

Observation that neither 3 nor 18 are quadratic residues modulo 19 means
that 1

F3

(
F6i+9 + F6i

2

)
cannot be a perfect square if i 6≡ 0 modulo 3.



FURTHER NONEXISTENCE OF FIBONACCI TRIANGLES 13

It is left to check for possible Fibonacci triangles corresponding to i ≡ 0
modulo 3. However, if S9(m) is not a perfect square for all m, then there
aren’t any Fibonacci triangles corresponding to i ≡ 0 modulo 3. Once again
we will proceed in two steps. The first step is to consider S9(m) modulo 8.
This is the repeating sequence

7,5,3,1,7, 5, 3, 1, 7, 5, 3, 1, . . .

which allows us to observe that if m 6≡ 0 modulo 4, then S9(m) is a nonresidue
modulo 8 and hence can’t be a perfect square. This leads us to our second
step which is the application of lemma 4.2.

If 4|m, then there exists an integer l > 1 such that m = 2l−1j for j odd.
Recall that in the case k = 9, the values of t, v, and τ are 18, 1, and 9
respectively. Also g = gcd(F9, F2l) = 1. So by lemma 4.2

S9(m) ≡ F2l−1 mod F2l .

Therefore (
S9(m)

F2l

)
=

(
F2l−1

F2l

)
= −1

and so S9(m) is not a perfect square when 4|m. This completes the second
step and in turn means there are no Fibonacci triangles corresponding to i ≡ 0
modulo 3. In fact,

Theorem 5.7. There are no Fibonacci triangles of the type (Fn+9, Fn+9, Fn).

5.5. The Case When k = 10. When k = 10 there are two possible values
of d, namely F2 = 1 and F10 = 55, depending on whether or not 5|i in the
triangle (F6i+10, F6i+10, F6i). We will consider these two cases in proving the
theorem

Theorem 5.8. There are no Fibonacci triangles of the type (Fn+10, Fn+10, Fn).

Proof. If (Fn+10, Fn+10, Fn) is a Fibonacci triangle, then it is of the form
(F6i+10, F6i+10, F6i) for some value of i. Modulo 4, F6i+10 + F6i

2
≡ F10 ≡ F4 ≡ 3

which is a nonresidue modulo 4. Therefore if 5 6 |i, then (F6i+10, F6i+10, F6i)
can’t be a Fibonacci triangle.

Recall

S10(m) =
1

F10

(
Ftm

2
+ Ftm+10

)
where t = 30 = 21(15). When 5|i, (F6i+10, F6i+10, F6i) is a Fibonacci triangle
only of S10(i/5) is a perfect square. First we consider the sequence S10(m)
modulo 161 which is

102,95,120,160,59,66,41,1,102, 95, 120, 160, 59, 66, 41, 1, . . .
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The odd entries in this sequence which repeats every 8 terms are {102, 120, 59, 41},
all of which are nonresidues modulo 161. Therefore if m is odd, S10(m) is not
a prefect square.

Next note that g = gcd(F10, F2l) = F2 = 1 for any integer l. Suppose m is
even. Then there exists integers l and j for l > 1 and j odd such that m = 2lj.
By lemma 4.2

S10(m) ≡ F2l−1 mod F2l

meaning (
S10(m)

F2l

)
=

(
F2l−1

F2l

)
= −1.

Therefore, if m is even, S10(m) is also not a perfect square. Hence there are
no Fibonacci triangles of the type (F6i+10, F6i+10, F6i). �
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