
FORMAL GROUPS OVER DISCRETE VALUATION RINGS

CHRIS HURLBURT

Abstract. This white paper contains some supplementary material to the theory of formal
groups over discrete valuation rings. The material contained is without doubt common
knowledge, though not necessarily explicitly written in the texts in the references. The
approach is exactly that found in chapter four of [2].

1

Let R be a discrete valuation ring with residue field k of characteristic p for p a prime
number. An n-dimensional commutative formal group law over R is an n-tuple of power
series

F (X, Y ) = (F1(X, Y ), . . . , Fn(X, Y ))

where Fi(X,Y ) ∈ R[[X,Y ]], X = (X1, . . . Xn), Y = (Y1, . . . , Yn), and

Fi(X, Y ) ≡ Xi + Yi mod deg 2

Fi(F (X, Y ), Z) = Fi(X,F (Y, Z))

Fi(X, Y ) = Fi(Y,X)

as defined on page 51 in [1]. Then as an exercise analogous to those in [2], we can show

F (X, 0) = X

F (0, Y ) = Y

This implies that Fi(X, 0) = Xi which in turn implies that every term of degree 2 or higher
contains at least one Yk. Similarly Fi(0, Y ) = Yi and so every term of degree 2 or higher in
the power series Fi contains at Xk element. We will refer the formal group associated to the
formal group law by F or by F (X, Y ) itself.

A morphism of formal groups from an n-dimensional formal group with n-tuple of power
series denoted by F to an m-dimensional formal group with m-tuple of power series denoted
by G is an m-tuple of power series θi ∈ R[T ] where T is a n-tuple such that

G(θ(X), θ(Y )) = θ(F (X, Y ))
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for X,Y m-tuples and θ = (θ1, . . . , θm). Let [m]F : F (X, Y ) → F (X, Y ) for n ∈ N be the
endomorphism defined by

[0]F (X) = 0

[1]F (X) = X

[m]F (X) = F (X, [m− 1]F (X)) if m ≥ 2

In cases when the formal group clearly implied, we will refer to the this endomorphism by
[m].

Proposition 1.1. Let F (X, Y ) be an n-dimensional formal group over R and let m ∈ Z,
m ≥ 0. Then

[m](X) = (mX1,mX2, . . . ,mXn) mod deg 2

Proof. Induction. �

Definition 1.2. An invariant differential of an n-dimensional formal group F (X, Y ) is the
‘differential form’

ω = P (T )DT

where P (T ) is an n× n matrix of power series in n variables and DT is the total derivative
of T (also an n× n matrix) that satisfies the condition

ω(F (T, Y )) = ω(T ).

Remark 1.3. The last condition is equivalent to

(1.1) P (F (T, Y ))DFT (T, Y ) = P (T )

where DFT is the n× n derivative matrix of F with respect to T .

If we substitute T = 0 into equation 1.1, then we get

(1.2) P (Y )DFT (0, Y ) = P (0)

where

DFT (0, Y ) =


∂F1

∂T1
(0, Y ) . . . ∂F1

∂Tn
(0, Y )

...
. . .

...
∂Fn

∂T1
(0, Y ) . . . ∂Fn

∂Tn
(0, Y )

 .
Note that modulo degree 1, the matrix DFT (0, Y ) is the identity and hence is invertible.
Therefore it is possible to solve equation 1.2 for P (Y ).

(1.3) P (Y ) = P (0) [DFX(0, Y )]−1

Now we note that any two functions ω differ by at most an n× n constant matrix.

Next we verify that the function P (Y ) given by equation 1.3 when used in the invariant
differential satisfies the invariant differential condition of ω(F (T, Y )) = ω(T ). If we differ-
entiate

F (F (X,Y ), Z) = F (X,F (Y, Z))
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with respect to X we have
∂F1

∂X1
(X,F (Y, Z)) . . . ∂F1

∂Xn
(X,F (Y, Z))

...
. . .

...
∂Fn

∂X1
(X,F (Y, Z)) . . . ∂Fn

∂Xn
(X,F (Y, Z))


=


∂F1

∂X1
(Y, Z) . . . ∂F1

∂Xn
(Y, Z)

...
. . .

...
∂Fn

∂X1
(Y, Z) . . . ∂Fn

∂Xn
(Y, Z)




∂F1

∂X1
(X, Y ) . . . ∂F1

∂Xn
(X, Y )

...
. . .

...
∂Fn

∂X1
(X, Y ) . . . ∂Fn

∂Xn
(X, Y )


More succinctly if DFX is the operator

DFX =


∂F1

∂X1
. . . ∂F1

∂Xn
...

. . .
...

∂Fn

∂X1
. . . ∂Fn

∂Xn


then applying this operator to the associative law gives

DFX(F (X, Y ), Z)DFX(X, Y ) = DFX(X,F (Y, Z)).

So when X = 0, this becomes

DFX(Y, Z)DFX(0, Y ) = DFX(0, F (Y, Z)).

Therefore

[DFX(0, F (Y, Z))]−1DFX(Y, Z) = [DFX(0, Y )]−1.

Substituting equation 1.3 into each side of equation 1.1 we have

P (0)[DFX(0, F (T, Y ))]−1DFX(T, Y )

and

P (0)[DFX(0, T )]−1

which are equal by our computations with the associative law and hence the invariant dif-
ferential condition ω(F (T, Y )) = ω(T ) is satisfied.

Definition 1.4. We say an invariant differential is normalized if P (0) = I where I is the
n× n identity matrix.

Corollary 1.5. The normalized invariant differential of an n-dimensional formal group
F (X, Y ) is unique. Any other invariant differential of F (X, Y ) differs from the normalized
invariant differential by an n× n matrix with coefficients in R.

Corollary 1.6. Let F (X, Y ), G(X, Y ) be n-dimensional formal groups and let ωF , ωG be
the respective normalized invariant differentials. Let f : F (X, Y ) → G(X, Y ) be a homo-
morphism. Then ωG ◦ f = Df(0)ωF where Df is the n× n derivative matrix of f .

Proof.

ωG(f(F (T,X))) = ωG(G(f(T ), f(S))

= ωG(f(T ))
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Hence ωG ◦ f satisfies the property of an invariant differential of F . So ωG ◦ f = AωF where
A is an n× n matrix. This means

[DGX(0, f(T ))]−1Df(T ) = A[DFX(0, T )]−1

and so

A = [DGX(0, f(T ))]−1Df(T )DFX(0, T ).

Substituting T = 0, we get A = Df(0).

�

Corollary 1.7. Let F (X, Y ) be an n-dimensional formal group. Let p ∈ Z be prime. Then

[p](T ) = (pf1(T ) + g1(T
P ), . . . , pfn(T ) + gn(T p))

where fi, gi are all power series in n-variables and T p def
= (T p

1 , T
p
2 , . . . , T

p
n) (by abuse of

notation). Moreover for each 1 ≤ i ≤ n, fi(0) = 0 = gi(0).

Proof. Let ω be the normalized invariant differential of F (X, Y ). We know [p](X) =
(pX1, pX2, . . . pXn) mod deg 2. So

D[p] =


p 0 . . . 0
0 p . . . 0
...

...
. . .

...
0 0 . . . p

 mod deg 1

Hence D[p](0) = pI where I is the n×n identity matrix. By the previous corollary ωF ◦ [p] =
pIωF or [DFX(0, [p](T ))]−1D[p](T ) = pI[DFX(0, T )]−1. Therefore

D[p](T ) = p[DFX(0, [p](T ))][DFX(0, T )]−1

= pM

where M is some matrix. So for any pair ij

∂[p]i
∂Tj

= ph(T )

for some power series in n-variables h(T ). Let aT k1
1 T k2

n . . . T kn
n be a term in [p]i such that it

is the only term with exponent (k1, k2, . . . , kn). We look at what happens to this term under
partial derivatives

partial of [p]i w.r.t. term resulting from aT k1
1 T k2

n . . . T kn
n

T1 ak1T
k1−1
1 T k2

n . . . T kn
n

T2 ak2T
k1
1 T k2−1

n . . . T kn
n

...
Tn aknT

k1
1 T k2

n . . . T kn−1
n
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In each of these cases we note that p must divide the coefficient in the second column. So if
p|a, we are done. Otherwise p must divide all of k1, . . . , kn. Hence we can split [p]i into two
parts:

[p]i = pfi(T ) + gi(T
p).

We note that by our sorting method, gi does not contain a constant term so gi(0) = 0.
However, [p]i(0) = 0 so fi = 0. We can do this for 1 ≤ i ≤ n completing the proof. �

Corollary 1.8. Let F (X, Y ) be an n-dimensional formal group. Let p ∈ Z be prime and let
k be a positive integer. Then

[pk]i(X) = pkφik(X)+pk−1φik−1(X
p
1 , . . . , X

p
n)+pk−2φik−2(X

p2

1 , . . . , X
p2

n )+. . .+φi0(X
pk

1 , . . . , Xpk

k )

where φij are all power series in n-variables with φij(0) = 0.

Proof. We proceed by induction. For the case k = 1, we refer to corollary 1.7. For ease of no-

tation we defineXpj def
= (Xpj

1 , X
pj

2 , . . . , X
pj

n ). Suppose [pk]i(X) = pkψik(X)+pk−1ψik−1(X
p)+

pk−2ψik−2(X
p2

) + . . .+ ψi0(X
pk

) for 1 ≤ i ≤ n. Consider

[pk+1](X) = [p] ◦ [pk+1](X)

= [p]
(
pkψ1k(X) + . . .+ ψ10(X

pk

), . . . , pkψnk(X) + . . .+ ψn0(X
pk

)
)

=

(
pf1

(
pkψ1k(X) + . . .+ ψ10(X

pk

), . . . , pkψnk(X) + . . .+ ψn0(X
pk

)
)

+ g1

(
(pkψ1k(X) + . . .+ ψ10(X

pk

))p, . . . , (pkψnk(X) + . . .+ ψn0(X
pk

)p)
)
,

. . . ,

+ pfn

(
pkψ1k(X) + . . .+ ψ10(X

pk

), . . . , pkψnk(X) + . . .+ ψn0(X
pk

)
)

+ gn

(
(pkψ1k(X) + . . .+ ψ10(X

pk

))p, . . . , (pkψnk(X) + . . .+ ψn0(X
pk

)p)
) )

The induction follows by rearrangement and then by noting that none of the resulting power
series could have a constant term, we have φij(0) = 0. �

2

Let m be the maximal ideal of R. An n-dimensional commutative formal group when applied
to n-tuples of elements in mR forms a group. For the rest of this section, whenever we refer
to an n-tuple X, we will assume that it is an n-tuple of elements in mR and for this section
we will fix the non-zero n-tuple x throughout.

Let ν : R→ R be the valuation. Let j be the index such that

ν(xj) = min{ν(xi)|1 ≤ i ≤ n}
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Proposition 2.1. Suppose there exists an integer m such that [pm](x) = 0 but [pm−1](x) 6= 0.
Then

ν(xj) ≤
ν(p)

p− 1
.

Proof. Using corollary 1.8,

[pm]j(x) = pmφjm(x) + pm−1φjm−1(x
p) + . . .+ φj0(x

pm

) = 0.

In addition [pm]j(x) ≡ pmxj mod deg 2. Now we note that every term in φjm(x) of deg 2 or
higher will have valuation higher than the valuation of xj. So for the term pmxj to cancel,
its valuation must be equal to the valuation of a term from some φji for 1 ≤ i < m. The

minimum possible valuation for any term in φji is ν(xpm−i

j ). So

ν(pmxj) ≥ min{ν(pm−1xp
j), ν(p

m−2xp2

j ), . . . , ν(pxpm−1

j ), ν(xpm

j )}.
Suppose i is the index of the minimum value on the right. Then

ν(pmxj) ≥ ν(pm−ixpi

j )

implying
iν(p)

pi − 1
≥ ν(xj).

Lastly note
ν(p)

p− 1
≥ iν(p)

pi − 1
≥ ν(xj).

�

The following are immediate consequences of the proposition.

Corollary 2.2. Suppose there exists an integer m such that [pm](x) = 0 but [pm−1](x) 6= 0.
Then

min{ν(pxj), ν(x
p
j)} = ν(xp

j)

or
pν(xj) ≤ ν(p) + ν(xj) = ν(pxj).

Corollary 2.3. Suppose there exists an integer m such that [pm](x) = 0 but [pm−1](x) 6= 0.
Then for all 1 ≤ i ≤ n,

ν([p]i(x) ≥ ν(xp
j) = pν(xj).

Proof.

[p]i(x) = pfi(x) + gi(x
p)

implying

ν([p]i(x)) = ν (pfi(x) + gi(x
p))

ν([p]i(x)) ≥ min{ν(pxj), ν(x
p
j)} = ν(xp

j)

�



FORMAL GROUPS OVER DISCRETE VALUATION RINGS 7

Using corollary 2.3, we can induct to show

Proposition 2.4. Suppose there exists an integer m such that [pm](x) = 0 but [pm−1](x) 6= 0.
Then for all 1 ≤ i ≤ n,

ν
(
[pk]i(x)

)
≥ pkν(xj).

Proof. Induction. Case k = 1 follows from corollary 2.3. Suppose k = 2. For 1 ≤ i ≤ n,

[p2]i(x) = [p]i([p](x)).

So we can choose l such that

ν([p]l(x)) = min{ν([p]i(x)) : 1 ≤ i ≤ n}.
Then

ν ([p]i([p](x))) ≥ pν([p]l(x))

ν
(
[p2]i(x)

)
≥ pν([p]l(x)) ≥ p(pν(xj))

ν
(
[p2]i(x)

)
≥ p2ν(xj).

Suppose that for all 1 ≤ i ≤ n, ν
(
[pk−1]i(x)

)
≥ pk−1ν(xj). Then

[pk]i(x) = [p]i([p
k−1](x)).

Let l be such that

ν([pk−1]l(x)) = min{ν([pk−1]i(x)) : 1 ≤ i ≤ n}.
Then

ν
(
[p]i([p

k−1](x))
)
≥ pν([pk−1]l(x))

ν
(
[pk]i(x)

)
≥ pν([pk−1]l(x)) ≥ p(pk−1ν(xj))

ν
(
[pk]i(x)

)
≥ pkν(xj).

The proposition follows from induction. �

We can now prove the following theorem.

Theorem 2.5. Suppose there exists an integer m such that [pm](x) = 0 but [pm−1](x) 6= 0.
Then

pm−1ν(xj) ≤
ν(p)

p− 1
.

Proof. Choose l such that

ν
(
[pm−1]l(x)

)
= min{ν([pm−1]i(x)) : 1 ≤ i ≤ n}.

(Note: This means [pm−1]l(x) 6= 0.) Now

0 = [p]i
(
[pm−1]l(x)

)
= pfi([p

m−1](x)) + gi(([p
m−1](x))p)

= p[pm−1]l(x) mod deg 2 considering [pm−1]l(x) as the variables.
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In order for the element p[pm−1]l(x) to be cancelled in a discrete valuation ring

ν(p[pm−1]l(x)) ≥ ν
(
([pm−1]l(x))

p
)

implying

[pm−1]l(x) ≤
ν(p)

p− 1
.

Combining this inequality with the inequality from the previous proposition

pm−1ν(xj) ≤
ν(p)

p− 1
.

�
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