
Meltdown: Lessons Learned

Paul Hubbard	

pfh@phfactor.net

mailto:pfh@phfactor.net

Introduction

• http://www.phfactor.net/at/ has everything
you need to follow along and try the app.

http://www.phfactor.net/at/

Motivation

• I have a lot of sites I want to keep an eye on, a few I
want to always read, and many more to keep in my
peripheral attention.	

• Apps like Flipboard, Currents and Zite are magazines.	

• I want a fast app for a LOT of feeds. Like 1,000 of ‘em.	

• I have Fever running, but there wasn’t an Android app
yet.

The other motives

• The app store is your new resume.	

• “You need to have at least one app in the store” -
Kathleen	

• I want visibility on Github and LinkedIn

Use cases and stories
1. I have a few minutes and want to read some news. The

news must be fresh; the app must be fast.	

2. I’m at my desk and want to read on the browser. I don’t
want to see stuff I’ve read on the mobile or tablet.	

!

=> I want an interface that makes it easy to read, skim,
or ignore.

RSS?	
Fever?

• XML documents, published along with site, that have
post information plus a unique ID.	

• Clients can check for updates to feed periodically	

• Fever is a commercial RSS aggregator (PHP)

Meltdown
• Native app for Android v4 or later	

• Pure reader: no code to manage/add feeds	

• Written over four months of nights and weekends,
around 4k SLOC	

• Released Nov 2012	

• Niche app - around 1,400 total installs	

• Open source

Demo

Install stats

Speed injures

• My #1 feature is speed, which lead to...	

• My first big mistake: In-memory data structures	

• My second mistake: JSON files	

• My biggest mistake of all: Locking data.

App organization
• Activities with ListViews for groups, feeds, and posts. 	

• ScrollView + WebView for viewing a post	

• IntentService run via AlarmManager to keep updated.	

• AsyncTasks to mark stuff as read.

Data structures

• In-memory arrays for groups, feeds and posts. Owned
and managed by Application.	

• Classes as data structures - all public.	

• Bulky page contents in individual JSON files	

• IntentService uses LocalBroadcastManager

Fever REST API

• Well documented at http://feedafever.com/api	

• Already alternatives, e.g. https://github.com/
passiomatic/coldsweat	

• Emerging standard?

http://feedafever.com/api
https://github.com/passiomatic/coldsweat

Android Docs Are Bad

• Lots of fine detail but hard to find big picture. E.g.,
SO or blog posts on how to fix an error, but harder
to find advice on how to design an app.	

• The book I bought was good, but the APIs were
deprecated by the time I started!	

• A mentor would have helped immensely

Evolving design patterns
• Activity or Fragments?	

• SQLiteOpenHelper or ContentProvider?	

• insert vs SQL bulk operations?	

• ContentProvider or SyncAdapter?	

• ManagedCursor vs CursorLoader?	

• Multiple HTTP clients, DownloadManager

The Docs I Want

• Big-picture design patterns	

• Detailed API / parameter /return value	

• Sample code, as concise as possible	

• Context: When to use A versus B, drawbacks, gotchas,
bugs.

Finding Good Code

• Google I/O - https://code.google.com/p/iosched/	

• Android blog - http://android-
developers.blogspot.com	

• Github - look for projects with stars and forks	

• Google sample code in ADK

http://android-developers.blogspot.com

Where I blew it

• More time on RTFM and design. 	

• Should have been a SyncAdapter app from the start	

• Nights and weekends lead to bad decisions.	

• “Always have running code”	

• Strings	

• Activities and not Fragments

SQLite mistakes

• Wrote an SQLiteOpenHelper as per book, got a
whopping insert per second on a Galaxy Nexus.	

• Rewrote using the filesystem, got ~1k per second.	

• Stopped there - should have kept reading and found
bulk SQL operations.

Sync and lock errors

• Despite knowing pthreads & MPI, I didn’t RTFM on
locking.	

• App works... almost all of the time.	

• 3 possible activities need to lock	

• Derived data!

Other Mistakes
• Strings not in strings.xml - hard to fix, blocker on

localization and translation.	

• Communications code doesn’t save and present errors
to user. Hard problem.	

• Local broadcasts are not reliable	

• ListViews blow up when done poorly

Useful tips and tools
• ITerm2 - select, right click, search on Google. Best way

to find errors.	

• ‘adb logcat | grep Meltdown’ in one and ‘adb logcat |
grep Runtime’ in another	

• LaunchBar shortcut to search StackOverflow	

• Play console - stack traces	

• GraphicalHTTPClient and API widget

Little touches help!
• Correct keyboard for different text entry - URLs, email,

passwords	

• Subject/verb agreement	

• Share to calendar	

• Call users’ URL as a hook	

• Share outwards with text/plain	

• Mark as read in background - heck, all network in background

Odd bits

• Couple small commits on Github, but I need to do
more to encourage collaboration there.	

• Runs on Blackberry OS 10	

• Volunteers for translation	

• Other app stores - Amazon, AppSurfer

Status of version two
• Volunteering to present it here lead to a frantic

attempt to clean up the mess.	

• Bulk SQL ops working, ~2k / sec on HTC One.	

• ContentProvider for items	

• Fragments for tablets and landscape	

• New ListView with favicon placeholder	

• Faster, uses less memory, less facepalm-y

More ideas for v2
• Strings into strings.xml & move to Android Studio	

• Add gestures to interface	

• More time on ListView cell design	

• SyncAdapter once I have working ContentProvider	

• EventBus and/or Volley	

• Coalesce mark-as-read updates	

• Might use ACRA with dialog to report bugs

Hoping for help here

• Issue 20: HTTP stops working. WTF?	

• Best design patterns for Service / Activity IPC and
locking. EventBus? Java primitives?	

• Service -> ProgressBar?	

• How to save and present HTTP(S) errors

Free Advice
• Look at how Google writes iosched	

• Setup Eclipse to filter completions - big help.	

• Invest the time to learn the complex patterns such as
SyncAdapter and CursorLoader	

• Research Volley or other networking libraries	

• Use EventBus for IPC. Super clean.	

• Be willing to share flawed code. It’s OK.

